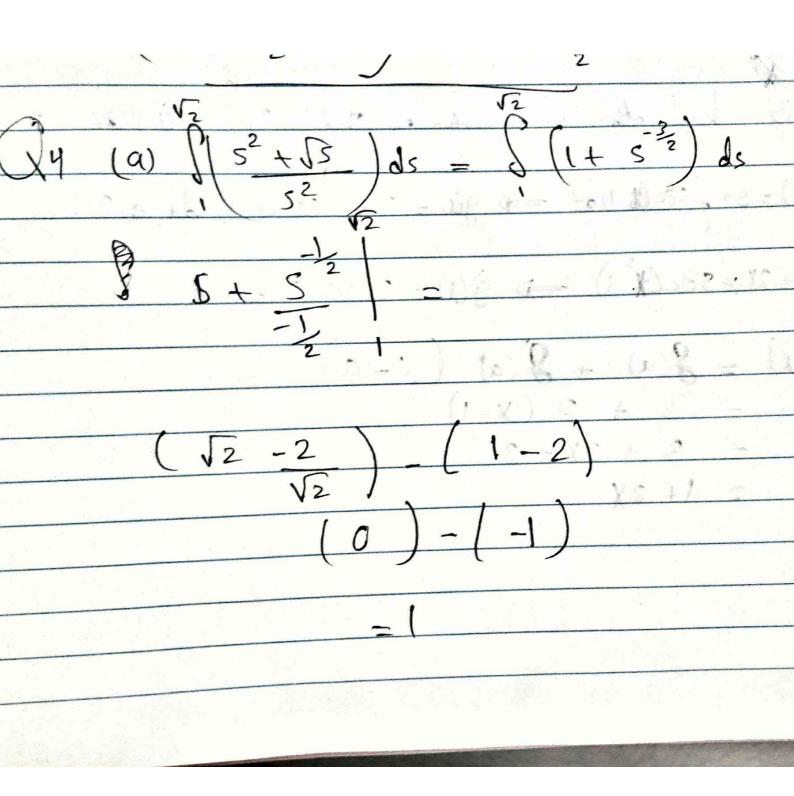
Chapter 5 e.	UPLOADED BY AHMAD JUNDI
Q: (a) I sin(5x) dv	= Cos sx + c
(b) Stan²x dy =	Second Jan
	= $tan X - X + C$
(B) S(1+ Coto) do	- J Csc20.10
	= - cot 0 + c
$(d) \int \frac{csc\theta}{scso-sin\theta} d\theta =$	
0	
Sino .do	$= \int \frac{\sin \theta}{1-\sin \theta} \cdot d\theta$
$= \int \frac{1}{1-\sin^2 \theta} . d\theta$	- 1 .30 coso

Sec20.20 - tand + c

$$y = -\int_{0}^{\tan y} dt$$


$$y = -\frac{\sec^2 x}{1+t^2} = \frac{\sec^2 x}{-1-t^2}$$

(3) Find the linear zation of
$$g(x) = 3+ \int sec(t-1) dt$$
 al $y = g(x) = 3+ \int sec(t-1) dt = 0$ $g(x) = 3+ \int sec(t-1) dt = 0$

$$L(x) = g(a) + g(a) (x-a)$$

$$= 3 + 2(x-1)$$

$$-3+2x-2$$

(b)
$$\int_{0}^{\infty} \left(\operatorname{Scc} x + \operatorname{tanx} \right)^{2} dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

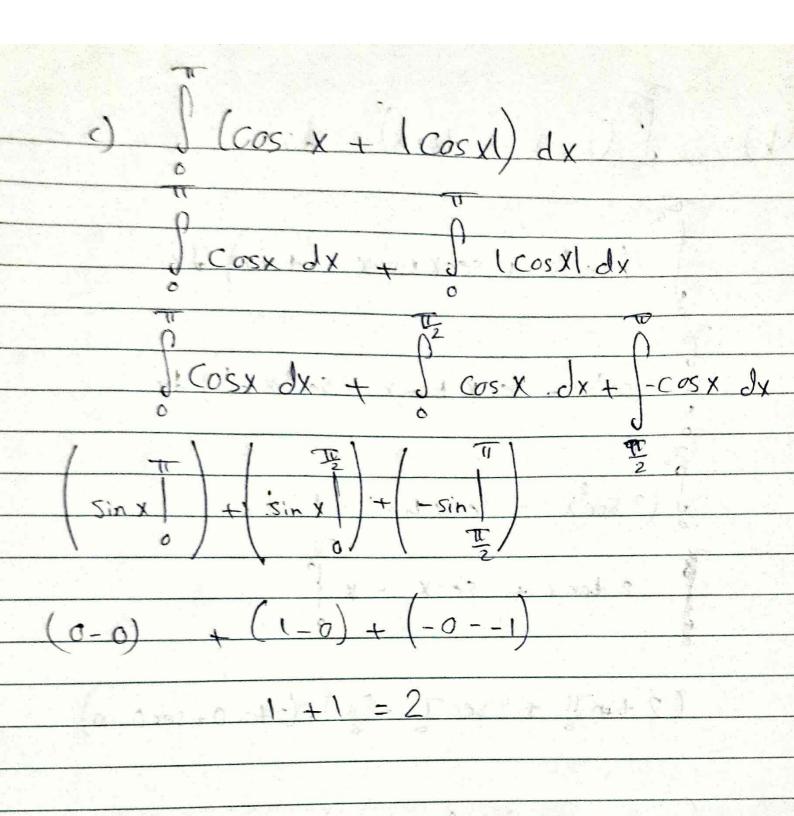
$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$


$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{scc} x + \operatorname{scc} x + \operatorname{tanx} \right) dx$$

$$\int_{0}^{\infty} \left(\operatorname{scc} x + \operatorname{$$

UPLOADED BY AHMAD JUNDI

Q5 (a)
$$\int \frac{dx}{\sqrt{x}(1+\sqrt{y})^2} \int \frac{dy}{\sqrt{y}} = \frac{dy}{\sqrt{y}} \int \frac{dx}{\sqrt{x}} = \frac{dy}{\sqrt{y}} \int \frac{dx}{\sqrt{x}} \int \frac{dx}{\sqrt{y}} \int \frac{dx}{\sqrt{y}}$$

UPLOADED BY AHMAD JUNDI